To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image-mesh pairs in multi-view training data. To address this shortcoming, people have explored the use of synthetic images. But besides the usual impact of visual gap between rendered and target data, synthetic-data-driven multi-view estimators also suffer from overfitting to the camera viewpoint distribution sampled during training which usually differs from real-world distributions. Tackling both challenges, we propose a novel simulation-based training pipeline for multi-view human mesh recovery, which (a) relies on intermediate 2D representations which are more robust to synthetic-to-real domain gap; (b) leverages learnable calibration and triangulation to adapt to more diversified camera setups; and (c) progressively aggregates multi-view information in a canonical 3D space to remove ambiguities in 2D representations. Through extensive benchmarking, we demonstrate the superiority of the proposed solution especially for unseen in-the-wild scenarios.
translated by 谷歌翻译
During the deployment of deep neural networks (DNNs) on edge devices, many research efforts are devoted to the limited hardware resource. However, little attention is paid to the influence of dynamic power management. As edge devices typically only have a budget of energy with batteries (rather than almost unlimited energy support on servers or workstations), their dynamic power management often changes the execution frequency as in the widely-used dynamic voltage and frequency scaling (DVFS) technique. This leads to highly unstable inference speed performance, especially for computation-intensive DNN models, which can harm user experience and waste hardware resources. We firstly identify this problem and then propose All-in-One, a highly representative pruning framework to work with dynamic power management using DVFS. The framework can use only one set of model weights and soft masks (together with other auxiliary parameters of negligible storage) to represent multiple models of various pruning ratios. By re-configuring the model to the corresponding pruning ratio for a specific execution frequency (and voltage), we are able to achieve stable inference speed, i.e., keeping the difference in speed performance under various execution frequencies as small as possible. Our experiments demonstrate that our method not only achieves high accuracy for multiple models of different pruning ratios, but also reduces their variance of inference latency for various frequencies, with minimal memory consumption of only one model and one soft mask.
translated by 谷歌翻译
Mode collapse is still a major unsolved problem in generative adversarial networks. In this work, we analyze the causes of mode collapse from a new perspective. Due to the nonuniform sampling in the training process, some sub-distributions can be missed while sampling data. Therefore, the GAN objective can reach the minimum when the generated distribution is not the same as the real one. To alleviate the problem, we propose a global distribution fitting (GDF) method by a penalty term to constrain generated data distribution. On the basis of not changing the global minimum of the GAN objective, GDF will make it harder to reach the minimum value when the generated distribution is not the same as the real one. Furthermore, we also propose a local distribution fitting (LDF) method to cope with the situation that the real distribution is unknown. Experiments on several benchmarks demonstrate the effectiveness and competitive performance of GDF and LDF.
translated by 谷歌翻译
Three-phase PWM voltage-source rectifier (VSR) systems have been widely used in various energy conversion systems, where current sensors are the key component for state monitoring and system control. The current sensor faults may bring hidden danger or damage to the whole system; therefore, this paper proposed a random forest (RF) and current fault texture feature-based method for current sensor fault diagnosis in three-phase PWM VSR systems. First, the three-phase alternating currents (ACs) of the three-phase PWM VSR are collected to extract the current fault texture features, and no additional hardware sensors are needed to avoid causing additional unstable factors. Then, the current fault texture features are adopted to train the random forest current sensor fault detection and diagnosis (CSFDD) classifier, which is a data-driven CSFDD classifier. Finally, the effectiveness of the proposed method is verified by simulation experiments. The result shows that the current sensor faults can be detected and located successfully and that it can effectively provide fault locations for maintenance personnel to keep the stable operation of the whole system.
translated by 谷歌翻译
包括设备诊断和异常检测在内的工业分析很大程度上依赖于异质生产数据的整合。知识图(kgs)作为数据格式和本体作为统一数据模式是一个突出的解决方案,它提供了高质量的数据集成以及一种方便且标准化的方式来交换数据并将分析应用程序分层。然而,它们之间高度不匹配的本体和工业数据的本体学自然而然导致低质量的KG,这阻碍了工业分析的采用和可扩展性。实际上,这样的kg大大增加了为用户编写查询的培训时间,消耗大量存储以获取冗余信息,并且很难维护和更新。为了解决这个问题,我们提出了一种本体论重塑方法,将本体论转换为KG模式,以更好地反映基本数据,从而有助于构建更好的KGS。在这张海报中,我们对正在进行的研究进行了初步讨论,并通过Bosch上有关现实世界行业数据的大量SPARQL查询来评估我们的方法,并讨论我们的发现。
translated by 谷歌翻译
了解动态场景中的3D运动对于许多视觉应用至关重要。最近的进步主要集中在估计人类等某些特定元素的活动上。在本文中,我们利用神经运动场来估计多视图设置中所有点的运动。由于颜色相似的点和与时变颜色的点的歧义,从动态场景中对动态场景进行建模运动是具有挑战性的。我们建议将估计运动的正规化为可预测。如果已知来自以前的帧的运动,那么在不久的将来的运动应该是可以预测的。因此,我们通过首先调节潜在嵌入的估计运动来引入可预测性正则化,然后通过采用预测网络来在嵌入式上执行可预测性。所提出的框架pref(可预测性正则化字段)比基于最先进的神经运动场的动态场景表示方法在PAR或更好的结果上取得了更好的成绩,同时不需要对场景的先验知识。
translated by 谷歌翻译
持续学习的现有工作(CL)的重点是减轻灾难性遗忘,即学习新任务时过去任务的模型绩效恶化。但是,CL系统的训练效率不足,这限制了CL系统在资源有限的方案下的现实应用。在这项工作中,我们提出了一个名为“稀疏持续学习”(SPARCL)的新颖框架,这是第一个利用稀疏性以使边缘设备上具有成本效益的持续学习的研究。 SPARCL通过三个方面的协同作用来实现训练加速度和准确性保护:体重稀疏性,数据效率和梯度稀疏性。具体而言,我们建议在整个CL过程中学习一个稀疏网络,动态数据删除(DDR),以删除信息较少的培训数据和动态梯度掩盖(DGM),以稀疏梯度更新。他们每个人不仅提高了效率,而且进一步减轻了灾难性的遗忘。 SPARCL始终提高现有最新CL方法(SOTA)CL方法的训练效率最多减少了训练失败,而且令人惊讶的是,SOTA的准确性最多最多提高了1.7%。 SPARCL还优于通过将SOTA稀疏训练方法适应CL设置的效率和准确性获得的竞争基线。我们还评估了SPARCL在真实手机上的有效性,进一步表明了我们方法的实际潜力。
translated by 谷歌翻译
全面监督的人类网格恢复方法是渴望数据的,由于3D规定基准数据集的可用性有限和多样性,因此具有较差的概括性。使用合成数据驱动的训练范例,已经从合成配对的2D表示(例如2D关键点和分段掩码)和3D网格中训练了模型的最新进展,其中已使用合成数据驱动的训练范例和3D网格进行了训练。但是,由于合成训练数据和实际测试数据之间的域间隙很难解决2D密集表示,因此很少探索合成密集的对应图(即IUV)。为了减轻IUV上的这个领域差距,我们提出了使用可靠但稀疏表示的互补信息(2D关键点)提出的交叉代理对齐。具体而言,初始网格估计和两个2D表示之间的比对误差将转发为回归器,并在以下网格回归中动态校正。这种适应性的交叉代理对准明确地从偏差和捕获互补信息中学习:从稀疏的表示和浓郁的浓度中的稳健性。我们对多个标准基准数据集进行了广泛的实验,并展示了竞争结果,帮助减少在人类网格估计中生产最新模型所需的注释工作。
translated by 谷歌翻译
我们引入了基于高斯工艺回归和边缘化图内核(GPR-MGK)的探索性主动学习(AL)算法,以最低成本探索化学空间。使用高通量分子动力学模拟生成数据和图神经网络(GNN)以预测,我们为热力学性质预测构建了一个主动学习分子模拟框架。在特定的靶向251,728个烷烃分子中,由4至19个碳原子及其液体物理特性组成:密度,热能和汽化焓,我们使用AL算法选择最有用的分子来代表化学空间。计算和实验测试集的验证表明,只有313个(占总数的0.124 \%)分子足以训练用于计算测试集的$ \ rm r^2> 0.99 $的精确GNN模型和$ \ rm rm r^2>>实验测试集0.94 $。我们重点介绍了提出的AL算法的两个优点:与高通量数据生成和可靠的不确定性量化的兼容性。
translated by 谷歌翻译
机器学习模型已在移动网络中部署,以处理来自不同层的数据,以实现自动化网络管理和设备的智能。为了克服集中式机器学习的高度沟通成本和严重的隐私问题,已提出联合学习(FL)来实现网络设备之间的分布式机器学习。虽然在FL中广泛研究了计算和通信限制,但仍未探索设备存储对FL性能的影响。如果没有有效有效的数据选择政策来过滤设备上的大量流媒体数据,经典FL可能会遭受更长的模型训练时间(超过$ 4 \ times $)和显着的推理准确性(超过$ 7 \%\%$),则遭受了损失,观察到了。在我们的实验中。在这项工作中,我们迈出了第一步,考虑使用有限的在设备存储的FL的在线数据选择。我们首先定义了一个新的数据评估度量,以在FL中进行数据选择:在设备数据样本上,局部梯度在所有设备的数据上投影到全球梯度上。我们进一步设计\ textbf {ode},一个\ textbf {o} nline \ textbf {d} ata s \ textbf {e textbf {e} fl for f for fl f textbf {o}的框架,用于协作网络设备,以协作存储有价值的数据示例,并保证用于快速的理论保证同时提高模型收敛并增强最终模型精度。一项工业任务(移动网络流量分类)和三个公共任务(综合任务,图像分类,人类活动识别)的实验结果显示了ODE的显着优势,而不是最先进的方法。特别是,在工业数据集上,ODE的成就高达$ 2.5 \ times $ $加速的培训时间和6美元的最终推理准确性增加,并且在实践环境中对各种因素都有强大的态度。
translated by 谷歌翻译